3.519 \(\int \frac{\sec (c+d x)}{(a+b \sec (c+d x))^4} \, dx\)

Optimal. Leaf size=184 \[ \frac{a \left (2 a^2+3 b^2\right ) \tanh ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{d (a-b)^{7/2} (a+b)^{7/2}}-\frac{b \left (11 a^2+4 b^2\right ) \tan (c+d x)}{6 d \left (a^2-b^2\right )^3 (a+b \sec (c+d x))}-\frac{5 a b \tan (c+d x)}{6 d \left (a^2-b^2\right )^2 (a+b \sec (c+d x))^2}-\frac{b \tan (c+d x)}{3 d \left (a^2-b^2\right ) (a+b \sec (c+d x))^3} \]

[Out]

(a*(2*a^2 + 3*b^2)*ArcTanh[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/((a - b)^(7/2)*(a + b)^(7/2)*d) - (b*T
an[c + d*x])/(3*(a^2 - b^2)*d*(a + b*Sec[c + d*x])^3) - (5*a*b*Tan[c + d*x])/(6*(a^2 - b^2)^2*d*(a + b*Sec[c +
 d*x])^2) - (b*(11*a^2 + 4*b^2)*Tan[c + d*x])/(6*(a^2 - b^2)^3*d*(a + b*Sec[c + d*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.307289, antiderivative size = 184, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.316, Rules used = {3833, 4003, 12, 3831, 2659, 208} \[ \frac{a \left (2 a^2+3 b^2\right ) \tanh ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{d (a-b)^{7/2} (a+b)^{7/2}}-\frac{b \left (11 a^2+4 b^2\right ) \tan (c+d x)}{6 d \left (a^2-b^2\right )^3 (a+b \sec (c+d x))}-\frac{5 a b \tan (c+d x)}{6 d \left (a^2-b^2\right )^2 (a+b \sec (c+d x))^2}-\frac{b \tan (c+d x)}{3 d \left (a^2-b^2\right ) (a+b \sec (c+d x))^3} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]/(a + b*Sec[c + d*x])^4,x]

[Out]

(a*(2*a^2 + 3*b^2)*ArcTanh[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/((a - b)^(7/2)*(a + b)^(7/2)*d) - (b*T
an[c + d*x])/(3*(a^2 - b^2)*d*(a + b*Sec[c + d*x])^3) - (5*a*b*Tan[c + d*x])/(6*(a^2 - b^2)^2*d*(a + b*Sec[c +
 d*x])^2) - (b*(11*a^2 + 4*b^2)*Tan[c + d*x])/(6*(a^2 - b^2)^3*d*(a + b*Sec[c + d*x]))

Rule 3833

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> -Simp[(b*Cot[e + f*x]*(a
 + b*Csc[e + f*x])^(m + 1))/(f*(m + 1)*(a^2 - b^2)), x] + Dist[1/((m + 1)*(a^2 - b^2)), Int[Csc[e + f*x]*(a +
b*Csc[e + f*x])^(m + 1)*(a*(m + 1) - b*(m + 2)*Csc[e + f*x]), x], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^
2, 0] && LtQ[m, -1] && IntegerQ[2*m]

Rule 4003

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))
, x_Symbol] :> -Simp[((A*b - a*B)*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1))/(f*(m + 1)*(a^2 - b^2)), x] + Dis
t[1/((m + 1)*(a^2 - b^2)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*Simp[(a*A - b*B)*(m + 1) - (A*b - a*B
)*(m + 2)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, A, B, e, f}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0] &
& LtQ[m, -1]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 3831

Int[csc[(e_.) + (f_.)*(x_)]/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[1/b, Int[1/(1 + (a*Sin[e
 + f*x])/b), x], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 2659

Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x
]}, Dist[(2*e)/d, Subst[Int[1/(a + b + (a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}
, x] && NeQ[a^2 - b^2, 0]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{\sec (c+d x)}{(a+b \sec (c+d x))^4} \, dx &=-\frac{b \tan (c+d x)}{3 \left (a^2-b^2\right ) d (a+b \sec (c+d x))^3}-\frac{\int \frac{\sec (c+d x) (-3 a+2 b \sec (c+d x))}{(a+b \sec (c+d x))^3} \, dx}{3 \left (a^2-b^2\right )}\\ &=-\frac{b \tan (c+d x)}{3 \left (a^2-b^2\right ) d (a+b \sec (c+d x))^3}-\frac{5 a b \tan (c+d x)}{6 \left (a^2-b^2\right )^2 d (a+b \sec (c+d x))^2}+\frac{\int \frac{\sec (c+d x) \left (2 \left (3 a^2+2 b^2\right )-5 a b \sec (c+d x)\right )}{(a+b \sec (c+d x))^2} \, dx}{6 \left (a^2-b^2\right )^2}\\ &=-\frac{b \tan (c+d x)}{3 \left (a^2-b^2\right ) d (a+b \sec (c+d x))^3}-\frac{5 a b \tan (c+d x)}{6 \left (a^2-b^2\right )^2 d (a+b \sec (c+d x))^2}-\frac{b \left (11 a^2+4 b^2\right ) \tan (c+d x)}{6 \left (a^2-b^2\right )^3 d (a+b \sec (c+d x))}-\frac{\int -\frac{3 a \left (2 a^2+3 b^2\right ) \sec (c+d x)}{a+b \sec (c+d x)} \, dx}{6 \left (a^2-b^2\right )^3}\\ &=-\frac{b \tan (c+d x)}{3 \left (a^2-b^2\right ) d (a+b \sec (c+d x))^3}-\frac{5 a b \tan (c+d x)}{6 \left (a^2-b^2\right )^2 d (a+b \sec (c+d x))^2}-\frac{b \left (11 a^2+4 b^2\right ) \tan (c+d x)}{6 \left (a^2-b^2\right )^3 d (a+b \sec (c+d x))}+\frac{\left (a \left (2 a^2+3 b^2\right )\right ) \int \frac{\sec (c+d x)}{a+b \sec (c+d x)} \, dx}{2 \left (a^2-b^2\right )^3}\\ &=-\frac{b \tan (c+d x)}{3 \left (a^2-b^2\right ) d (a+b \sec (c+d x))^3}-\frac{5 a b \tan (c+d x)}{6 \left (a^2-b^2\right )^2 d (a+b \sec (c+d x))^2}-\frac{b \left (11 a^2+4 b^2\right ) \tan (c+d x)}{6 \left (a^2-b^2\right )^3 d (a+b \sec (c+d x))}+\frac{\left (a \left (2 a^2+3 b^2\right )\right ) \int \frac{1}{1+\frac{a \cos (c+d x)}{b}} \, dx}{2 b \left (a^2-b^2\right )^3}\\ &=-\frac{b \tan (c+d x)}{3 \left (a^2-b^2\right ) d (a+b \sec (c+d x))^3}-\frac{5 a b \tan (c+d x)}{6 \left (a^2-b^2\right )^2 d (a+b \sec (c+d x))^2}-\frac{b \left (11 a^2+4 b^2\right ) \tan (c+d x)}{6 \left (a^2-b^2\right )^3 d (a+b \sec (c+d x))}+\frac{\left (a \left (2 a^2+3 b^2\right )\right ) \operatorname{Subst}\left (\int \frac{1}{1+\frac{a}{b}+\left (1-\frac{a}{b}\right ) x^2} \, dx,x,\tan \left (\frac{1}{2} (c+d x)\right )\right )}{b \left (a^2-b^2\right )^3 d}\\ &=\frac{a \left (2 a^2+3 b^2\right ) \tanh ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{(a-b)^{7/2} (a+b)^{7/2} d}-\frac{b \tan (c+d x)}{3 \left (a^2-b^2\right ) d (a+b \sec (c+d x))^3}-\frac{5 a b \tan (c+d x)}{6 \left (a^2-b^2\right )^2 d (a+b \sec (c+d x))^2}-\frac{b \left (11 a^2+4 b^2\right ) \tan (c+d x)}{6 \left (a^2-b^2\right )^3 d (a+b \sec (c+d x))}\\ \end{align*}

Mathematica [A]  time = 1.10894, size = 163, normalized size = 0.89 \[ -\frac{\frac{b \sin (c+d x) \left (6 a b \left (9 a^2+b^2\right ) \cos (c+d x)+\left (-5 a^2 b^2+18 a^4+2 b^4\right ) \cos (2 (c+d x))+17 a^2 b^2+18 a^4+10 b^4\right )}{(a \cos (c+d x)+b)^3}+\frac{12 a \left (2 a^2+3 b^2\right ) \tanh ^{-1}\left (\frac{(b-a) \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a^2-b^2}}\right )}{\sqrt{a^2-b^2}}}{12 d (a-b)^3 (a+b)^3} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]/(a + b*Sec[c + d*x])^4,x]

[Out]

-((12*a*(2*a^2 + 3*b^2)*ArcTanh[((-a + b)*Tan[(c + d*x)/2])/Sqrt[a^2 - b^2]])/Sqrt[a^2 - b^2] + (b*(18*a^4 + 1
7*a^2*b^2 + 10*b^4 + 6*a*b*(9*a^2 + b^2)*Cos[c + d*x] + (18*a^4 - 5*a^2*b^2 + 2*b^4)*Cos[2*(c + d*x)])*Sin[c +
 d*x])/(b + a*Cos[c + d*x])^3)/(12*(a - b)^3*(a + b)^3*d)

________________________________________________________________________________________

Maple [A]  time = 0.061, size = 284, normalized size = 1.5 \begin{align*}{\frac{1}{d} \left ( -2\,{\frac{1}{ \left ( \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}a- \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}b-a-b \right ) ^{3}} \left ( -1/2\,{\frac{ \left ( 6\,{a}^{2}+3\,ab+2\,{b}^{2} \right ) b \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{5}}{ \left ( a-b \right ) \left ({a}^{3}+3\,{a}^{2}b+3\,a{b}^{2}+{b}^{3} \right ) }}+2/3\,{\frac{ \left ( 9\,{a}^{2}+{b}^{2} \right ) b \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{3}}{ \left ({a}^{2}+2\,ab+{b}^{2} \right ) \left ({a}^{2}-2\,ab+{b}^{2} \right ) }}-1/2\,{\frac{ \left ( 6\,{a}^{2}-3\,ab+2\,{b}^{2} \right ) b\tan \left ( 1/2\,dx+c/2 \right ) }{ \left ( a+b \right ) \left ({a}^{3}-3\,{a}^{2}b+3\,a{b}^{2}-{b}^{3} \right ) }} \right ) }+{\frac{a \left ( 2\,{a}^{2}+3\,{b}^{2} \right ) }{{a}^{6}-3\,{a}^{4}{b}^{2}+3\,{a}^{2}{b}^{4}-{b}^{6}}{\it Artanh} \left ({(a-b)\tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ){\frac{1}{\sqrt{ \left ( a+b \right ) \left ( a-b \right ) }}}} \right ){\frac{1}{\sqrt{ \left ( a+b \right ) \left ( a-b \right ) }}}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)/(a+b*sec(d*x+c))^4,x)

[Out]

1/d*(-2*(-1/2*(6*a^2+3*a*b+2*b^2)*b/(a-b)/(a^3+3*a^2*b+3*a*b^2+b^3)*tan(1/2*d*x+1/2*c)^5+2/3*(9*a^2+b^2)*b/(a^
2+2*a*b+b^2)/(a^2-2*a*b+b^2)*tan(1/2*d*x+1/2*c)^3-1/2*(6*a^2-3*a*b+2*b^2)*b/(a+b)/(a^3-3*a^2*b+3*a*b^2-b^3)*ta
n(1/2*d*x+1/2*c))/(tan(1/2*d*x+1/2*c)^2*a-tan(1/2*d*x+1/2*c)^2*b-a-b)^3+a*(2*a^2+3*b^2)/(a^6-3*a^4*b^2+3*a^2*b
^4-b^6)/((a+b)*(a-b))^(1/2)*arctanh((a-b)*tan(1/2*d*x+1/2*c)/((a+b)*(a-b))^(1/2)))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+b*sec(d*x+c))^4,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 2.25008, size = 1974, normalized size = 10.73 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+b*sec(d*x+c))^4,x, algorithm="fricas")

[Out]

[-1/12*(3*(2*a^3*b^3 + 3*a*b^5 + (2*a^6 + 3*a^4*b^2)*cos(d*x + c)^3 + 3*(2*a^5*b + 3*a^3*b^3)*cos(d*x + c)^2 +
 3*(2*a^4*b^2 + 3*a^2*b^4)*cos(d*x + c))*sqrt(a^2 - b^2)*log((2*a*b*cos(d*x + c) - (a^2 - 2*b^2)*cos(d*x + c)^
2 - 2*sqrt(a^2 - b^2)*(b*cos(d*x + c) + a)*sin(d*x + c) + 2*a^2 - b^2)/(a^2*cos(d*x + c)^2 + 2*a*b*cos(d*x + c
) + b^2)) + 2*(11*a^4*b^3 - 7*a^2*b^5 - 4*b^7 + (18*a^6*b - 23*a^4*b^3 + 7*a^2*b^5 - 2*b^7)*cos(d*x + c)^2 + 3
*(9*a^5*b^2 - 8*a^3*b^4 - a*b^6)*cos(d*x + c))*sin(d*x + c))/((a^11 - 4*a^9*b^2 + 6*a^7*b^4 - 4*a^5*b^6 + a^3*
b^8)*d*cos(d*x + c)^3 + 3*(a^10*b - 4*a^8*b^3 + 6*a^6*b^5 - 4*a^4*b^7 + a^2*b^9)*d*cos(d*x + c)^2 + 3*(a^9*b^2
 - 4*a^7*b^4 + 6*a^5*b^6 - 4*a^3*b^8 + a*b^10)*d*cos(d*x + c) + (a^8*b^3 - 4*a^6*b^5 + 6*a^4*b^7 - 4*a^2*b^9 +
 b^11)*d), 1/6*(3*(2*a^3*b^3 + 3*a*b^5 + (2*a^6 + 3*a^4*b^2)*cos(d*x + c)^3 + 3*(2*a^5*b + 3*a^3*b^3)*cos(d*x
+ c)^2 + 3*(2*a^4*b^2 + 3*a^2*b^4)*cos(d*x + c))*sqrt(-a^2 + b^2)*arctan(-sqrt(-a^2 + b^2)*(b*cos(d*x + c) + a
)/((a^2 - b^2)*sin(d*x + c))) - (11*a^4*b^3 - 7*a^2*b^5 - 4*b^7 + (18*a^6*b - 23*a^4*b^3 + 7*a^2*b^5 - 2*b^7)*
cos(d*x + c)^2 + 3*(9*a^5*b^2 - 8*a^3*b^4 - a*b^6)*cos(d*x + c))*sin(d*x + c))/((a^11 - 4*a^9*b^2 + 6*a^7*b^4
- 4*a^5*b^6 + a^3*b^8)*d*cos(d*x + c)^3 + 3*(a^10*b - 4*a^8*b^3 + 6*a^6*b^5 - 4*a^4*b^7 + a^2*b^9)*d*cos(d*x +
 c)^2 + 3*(a^9*b^2 - 4*a^7*b^4 + 6*a^5*b^6 - 4*a^3*b^8 + a*b^10)*d*cos(d*x + c) + (a^8*b^3 - 4*a^6*b^5 + 6*a^4
*b^7 - 4*a^2*b^9 + b^11)*d)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec{\left (c + d x \right )}}{\left (a + b \sec{\left (c + d x \right )}\right )^{4}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+b*sec(d*x+c))**4,x)

[Out]

Integral(sec(c + d*x)/(a + b*sec(c + d*x))**4, x)

________________________________________________________________________________________

Giac [B]  time = 1.34987, size = 544, normalized size = 2.96 \begin{align*} -\frac{\frac{3 \,{\left (2 \, a^{3} + 3 \, a b^{2}\right )}{\left (\pi \left \lfloor \frac{d x + c}{2 \, \pi } + \frac{1}{2} \right \rfloor \mathrm{sgn}\left (2 \, a - 2 \, b\right ) + \arctan \left (\frac{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{\sqrt{-a^{2} + b^{2}}}\right )\right )}}{{\left (a^{6} - 3 \, a^{4} b^{2} + 3 \, a^{2} b^{4} - b^{6}\right )} \sqrt{-a^{2} + b^{2}}} - \frac{18 \, a^{4} b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} - 27 \, a^{3} b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} + 6 \, a^{2} b^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} - 3 \, a b^{4} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} + 6 \, b^{5} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} - 36 \, a^{4} b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 32 \, a^{2} b^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 4 \, b^{5} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 18 \, a^{4} b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 27 \, a^{3} b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 6 \, a^{2} b^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 3 \, a b^{4} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 6 \, b^{5} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{{\left (a^{6} - 3 \, a^{4} b^{2} + 3 \, a^{2} b^{4} - b^{6}\right )}{\left (a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - a - b\right )}^{3}}}{3 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+b*sec(d*x+c))^4,x, algorithm="giac")

[Out]

-1/3*(3*(2*a^3 + 3*a*b^2)*(pi*floor(1/2*(d*x + c)/pi + 1/2)*sgn(2*a - 2*b) + arctan((a*tan(1/2*d*x + 1/2*c) -
b*tan(1/2*d*x + 1/2*c))/sqrt(-a^2 + b^2)))/((a^6 - 3*a^4*b^2 + 3*a^2*b^4 - b^6)*sqrt(-a^2 + b^2)) - (18*a^4*b*
tan(1/2*d*x + 1/2*c)^5 - 27*a^3*b^2*tan(1/2*d*x + 1/2*c)^5 + 6*a^2*b^3*tan(1/2*d*x + 1/2*c)^5 - 3*a*b^4*tan(1/
2*d*x + 1/2*c)^5 + 6*b^5*tan(1/2*d*x + 1/2*c)^5 - 36*a^4*b*tan(1/2*d*x + 1/2*c)^3 + 32*a^2*b^3*tan(1/2*d*x + 1
/2*c)^3 + 4*b^5*tan(1/2*d*x + 1/2*c)^3 + 18*a^4*b*tan(1/2*d*x + 1/2*c) + 27*a^3*b^2*tan(1/2*d*x + 1/2*c) + 6*a
^2*b^3*tan(1/2*d*x + 1/2*c) + 3*a*b^4*tan(1/2*d*x + 1/2*c) + 6*b^5*tan(1/2*d*x + 1/2*c))/((a^6 - 3*a^4*b^2 + 3
*a^2*b^4 - b^6)*(a*tan(1/2*d*x + 1/2*c)^2 - b*tan(1/2*d*x + 1/2*c)^2 - a - b)^3))/d